Wi-Fi

Wi-Fi

Wi-Fi (nebo také Wi-fi, WiFi, Wifi, wi-fi, wifi) je skupina bezdrátových síťových protokolů založených na standardech IEEE 802.11, které se běžně používají pro místní síťové propojení zařízení a pro přístup k internetu a umožňují blízkým digitálním zařízením vyměňovat si data prostřednictvím rádiových vln. Jedná se o nejrozšířenější počítačové sítě na světě, které se celosvětově používají v domácích a malých kancelářských sítích k propojení stolních a přenosných počítačů, tabletů, chytrých telefonů, chytrých televizorů, tiskáren a chytrých reproduktorů a jejich připojení k internetu pomocí bezdrátového směrovače a v bezdrátových přístupových bodech na veřejných místech, jako jsou kavárny, hotely, knihovny a letiště, které návštěvníkům poskytují přístup k internetu pro jejich mobilní přístroje.

Wi-Fi je ochranná známka neziskové organizace Wi-Fi Alliance, která omezuje používání spojení Wi-Fi Certified pouze na produkty, které úspěšně projdou certifikačním testováním interoperability.. V roce 2017 tvořilo Wi-Fi Alliance více než 800 společností z celého světa.V roce 2021 se celosvětově prodalo přibližně 3,2 miliardy zařízení s Wi-Fi.

Nově nainstalovaná domácí Wi-Fi síť v dubnu 2022

Wi-Fi využívá více částí skupiny protokolů IEEE 802 a je navržena tak, aby bezproblémově spolupracovala se svým drátovým sourozencem, Ethernetem. Kompatibilní zařízení se mohou propojovat prostřednictvím bezdrátových přístupových bodů mezi sebou navzájem i s kabelovými zařízeními a internetem. Různé verze Wi-Fi jsou specifikovány různými standardy protokolu IEEE 802.11, přičemž různé rádiové technologie určují rádiová pásma a maximální dosahy a rychlosti, kterých lze dosáhnout. Wi-Fi nejčastěji využívá rádiová pásma 2,4 gigahertzů (120 mm) ultra krátkých vln (UKV) a 5 gigahertzů (60 mm) superkrátkých vln (SKV); tato pásma jsou rozdělena do několika kanálů. Kanály mohou být sdíleny mezi sítěmi, ale v rámci dosahu může na jednom kanálu vysílat vždy pouze jeden vysílač.

Rádiová pásma Wi-Fi mají poměrně vysokou pohltivost a nejlépe fungují při přímé viditelnosti. Mnoho běžných překážek, jako jsou zdi, sloupy, domácí spotřebiče atd. sice mohou výrazně snížit dosah, ale zároveň to pomáhá minimalizovat rušení mezi různými sítěmi v přeplněném prostředí. Dosah přístupového bodu je přibližně 20 metrů v interiéru, zatímco některé přístupové body uvádějí dosah až 150 metrů ve venkovním prostředí. Pokrytí přístupovými body může být malé jako jedna místnost se zdmi, které blokují rádiové vlny, nebo velké až mnoho čtverečních kilometrů s použitím mnoha překrývajících se přístupových bodů s povoleným roamingem mezi nimi. V průběhu času se zvýšila rychlost a spektrální účinnost Wi-Fi. Od roku 2019 mohou některé verze sítě Wi-Fi provozované na vhodném hardwaru v blízkém dosahu dosahovat přenosové rychlosti až 9,6 Gbit/s (gigabitů za sekundu).

Historie

Wi-fi jako takový není zcela nový standard. Je založen na principu rozprostřeného spektra, který si roku 1942 nechali patentovat hudební skladatel George Antheil a herečka rakouského původu Hedy Lamarr. Američané se tehdy zabývali rádiově řízenými torpédy, ale toto rádiové ovládání mohl nepřítel rušit. Výše zmínění vymysleli ideu, jak by náhodná změna vysílacích kanálů snížila riziko nepřátelského rušení. Roku 1962 elektronický děrný pás umožnil přenos rádiové komunikace mezi americkými loděmi. Mezi 60. a 80. rokem se tato technologie využívala výhradně pro vojenské účely a na začátku 80. let byla uvolněna i pro civilní využití.

V roce 1997 publikoval mezinárodní standardizační institut IEEE (z angl. Institute of Electrical and Electronic Engineers) specifikaci standardu bezdrátové sítě pracující v ISM pásmu pod označením IEEE 802.11. V roce 1999 se tento standard rozšířil o další dvě specifikace 802.11a a 802.11b a byla založena organizace WECA (Wireless Ethernet Compatibility Alliance), v roce 2002 byla přejmenována na Wi-Fi Alliance. Aliance přiděluje po splnění podmínek logo, které ujišťuje kupujícího, že jeho zařízení je schopno komunikovat s ostatními zařízeními se stejným logem.

V roce 2014 je v prodávaných zařízeních nejčastěji podporován standard 802.11g z roku 2003, který zvýšil teoretickou rychlost v pásmu 2,4 GHz na 54 Mbit/s (reálné přenosové rychlosti jsou zhruba poloviční). Standard 802.11n z roku 2008 kromě zvýšení maximální rychlosti také podporuje kromě frekvence 2,4 GHz i pásmo 5 GHz (nepovinně) a přinesl technologii MIMO (Multiple-input multiple-output – mnohonásobný vstup i výstup), která umožňuje mezi zařízeními zároveň komunikovat na více frekvencích (podle počtu antén). V roce 2013 následoval standard 802.11ac a v roce 2014 pak 802.11ad. V roce 2020 obsahují běžně prodávaná mobilní zařízení podporu standardu 802.11ac.

Související informace naleznete také v článku IEEE 802.11.

Bezlicenční pásmo

Podrobnější informace naleznete v článku ISM pásmo.

Ke každé bezdrátové síti musí mít provozovatel od státu patřičnou licenci pro vysílání v určité frekvenci, tzv. licencované pásmo. Frekvencí není nekonečné množství, proto je stát za vysoké částky pronajímá (licencuje) a nájemce pásma pak i chrání (před rušením nebo neoprávněným užíváním pásma). Protože je ale rádiové vysílání na některých frekvencích pohlcováno například vodou při dešti (čehož využívá mikrovlnná trouba), nelze takové frekvence pronajímat (naopak je do těchto frekvencí směrováno rušení generované různými přístroji). Tato komerčně nevyužitelná frekvenční pásma byla uvolněna jako tzv. bezlicenční ISM pásmo (např. 2,4 GHz) pro průmyslové, vědecké a lékařské využití,[8][9] je však v nich nutné dodržovat podmínky stanovené Českým telekomunikačním úřadem. Toto pásmo začali využívat výrobci bezdrátových sítí, přičemž zpočátku měl každý výrobce vlastní technologie, ale časem se projevila výhodnost jednotných standardů (Wi-Fi, Bluetooth, WiMAX atp.).

Charakteristika

Původním cílem Wi-Fi sítí bylo zajišťovat vzájemné bezdrátové propojení přenosných zařízení a dále jejich připojování na lokální (např. firemní) sítě LAN. S postupem času začala být využívána i k bezdrátovému připojení do sítě Internet v rámci rozsáhlejších lokalit a tzv. přístupových bodů. Wi-Fi zařízení jsou dnes prakticky ve všech přenosných počítačích, tabletech či chytrých telefonech. Úspěch Wi-Fi přineslo využívání bezlicenčního pásma, což má negativní důsledky ve formě silného zarušení příslušného frekvenčního spektra. Komerčním nástupcem Wi-Fi měla být bezdrátová technologie WiMAX zaměřená na zlepšení přenosu signálu na větší vzdálenosti, která se však u mobilních operátorů neujala.

Wi-Fi zajišťuje komunikaci na spojové vrstvě, zbytek je záležitost vyšších protokolů (na rozdíl od bluetooth, který sám o sobě zajišťuje nejrůznější služby). Typicky se proto přenášejí zapouzdřené ethernetové rámce. Pro bezdrátovou komunikaci na sdíleném médiu (šíření elektromagnetického pole prostorem) je používán protokol CSMA/CA (Ethernet používá na vodičích CSMA/CD).

Bezpečnostní rizika

Bezdrátové sítě nejsou omezeny budovou (do které lze omezit vstup) a jejich dosah tak umožňuje případnému útočníkovi nerušenou práci pro útok na domácí nebo podnikovou LAN. Útočník může využít dosah bezdrátové sítě a zaútočit z větší vzdálenosti, protože pro úspěšné připojení stačí aby jen jeden konec bezdrátové komunikace používal výkonnou směrovou anténu (může sledovat síťové přenosy, vytvářet je nebo je ovlivňovat).[11] Pro sledování bezdrátového provozu jsou určeny technologie Prevence narušení bezdrátových systémů (WIPS) nebo detekce narušení bezdrátových systémů (WIDS, například program Kismet). Proto je velmi důležité správné nastavení zabezpečení bezdrátové sítě (přístup s pomocí hesla, volba moderního zabezpečení) na přístupovém bodu (AP).

Přítomnost více vysílačů Wi-Fi signálu zvyšuje přesnost určení polohy, čehož využívají jak telefony se systémem Android, tak iOS.[12][13] Monitorování Wi-Fi signálu lze využít i ke sledování pohybu "za zdí".

Pro zjišťování podrobných informací o okolních bezdrátových sítí k dispozici program inSSIDer nebo NetStumbler (Microsoft Windows). Shromažďování informací o umístění bezdrátových sítí se nazývá "Warchalking" nebo "Wardriving". Pro analýzu bezdrátového síťového provozu slouží program Kismet (multiplatformní), na demonstraci slabých míst (zranitelností) lze použít nástroj Aircrack-ng.

Struktura bezdrátové sítě

Bezdrátová síť může být vybudována různými způsoby v závislosti na požadované funkci. Ve všech případech hraje klíčovou roli identifikátor SSID (Service Set Identifier), což je řetězec až 32 ASCII znaků, kterými se jednotlivé sítě rozlišují. SSID identifikátor je v pravidelných intervalech vysílán jako broadcast, takže všichni potenciální klienti si mohou snadno zobrazit dostupné bezdrátové sítě, ke kterým je možné se připojit (tzv. asociovat se s přístupovým bodem). Nejjednodušším způsobem, jak bezdrátovou síť skrýt, je zamezit vysílání SSID. Připojující se klient pak musí SSID předem znát, jinak se nedokáže k druhé straně připojit. Protože je však SSID při připojování klienta přenášeno v čitelné podobě, lze ho snadno zachytit a skrytou síť odhalit.

Související informace naleznete také v článku SSID.

Ad-hoc sítě

V ad-hoc síti se navzájem spojují dva klienti, kteří jsou v rovnocenné pozici (peer-to-peer). Vzájemná identifikace probíhá pomocí SSID. Obě strany musí být v přímém rádiovém dosahu, což je typické pro malou síť nebo příležitostné spojení, kdy jsou počítače ve vzdálenosti několika metrů.

Infrastrukturní sítě

Typická infrastrukturní bezdrátová síť obsahuje jeden nebo více přístupových bodů (AP – Access Point), které vysílají své SSID. Klient si podle názvů sítí vybere, ke které se připojí. Několik přístupových bodů může mít stejný SSID identifikátor a je plně záležitostí klienta, ke kterému se připojí. Může se například přepojovat v závislosti na síle signálu a umožňovat tak klientovi volný pohyb ve větší síti (tzv. roaming).

Související informace naleznete také v článku Access point.

Pojmy vztahující se k Wi-Fi

Přístupový bod

Přístupový bod (PB) slouží k připojení klientů (notebook, tablet, chytrý telefon). PB řídí komunikaci mezi zařízeními, a proto se taková síť označuje jako infrastrukturní. PB obvykle vykonává funkci mostu nebo routeru (brány).

Router

Brána (gateway, router) je v počítačových sítích uzel, který spojuje dvě různé sítě. U Wi-Fi se tak označují zařízení, které zprostředkovávají přístup do lokální sítě (LAN) nebo Internetu (tj. jsou připojeny k poskytovateli internetového připojení) a zároveň poskytují úplně oddělení od bezdrátové sítě (LAN/poskytovatel používá jiné IP adresy, než bezdrátoví klienti a dochází k směrování nebo překladu síťového provozu). Někdy obsahuje funkci firewallu.

Bridge

Bridge (most) je typ AP, které umožňuje propojit bezdrátovou síť a lokální síť (LAN) tak, že bezdrátoví klienti jsou ve stejné podsíti. Znamená to, že se bezdrátoví klienti chovají stejně, jako by byli připojeni k LAN přímo (kabelem), resp. pomocí bridge dojde k transparentnímu rozšíření LAN sítě na bezdrátové klienty (není potřeba jiné nastavení u LAN klientů a bezdrátových klientů). Nevýhodou je možné zahlcení bezdrátové sítě broadcasty.

WISP

WISP režim (režim klient, anglicky Wireless Internet service provider) umožňuje přístupový bod (AP) bezdrátově připojit k poskytovateli internetového připojení (AP je v roli bezdrátového klienta) a do LAN konektorů připojit vlastní počítače (typicky se automaticky zapne překlad adres NAT). V tomto režimu tedy není možné v domácnosti bezdrátově připojit například mobilní telefon (bylo by potřeba druhé AP nebo by zařízení muselo mít dvě bezdrátové části, tzv. client-to-multiclient).

WPS

Wi-Fi Protected Setup umožňuje po stisknutí tlačítka na přístupovém bodě automaticky připojit bezdrátového klienta (např. mobilní telefon).

Zabezpečení bezdrátové sítě

Problém bezpečnosti bezdrátových sítí vyplývá zejména z toho, že jejich signál se šíří i mimo zabezpečený prostor bez ohledu na zdi budov, což si mnoho uživatelů neuvědomuje. Dalším problémem je fakt, že se dříve bezdrátová zařízení prodávaly s nastavením bez jakéhokoliv zabezpečení, aby po zakoupení fungovala ihned po zapojení do zásuvky. Nezvaný host se tak mohl snadno připojit i do velmi vzdálené bezdrátové sítě jen s pomocí směrové antény, i když druhá strana výkonnou anténu nemá. Starší zabezpečení bezdrátových sítí je možné obejít (např. WEP).

Bezpečnost bezdrátových sítí můžeme rozdělit do dvou hlavních skupin:

  • šifrování = zabezpečení přenášených dat před odposlechem
  • autorizace = řízení přístupu oprávněných uživatelů

Zablokování vysílání SSID

Zablokování vysílání SSID sice porušuje standard, ale je nejjednodušším zabezpečením bezdrátové sítě pomocí jejího zdánlivého skrytí. Klienti síť nezobrazí v seznamu dostupných bezdrátových sítí, protože nepřijímají broadcasty se SSID. Ovšem při připojování klienta k přípojnému bodu je SSID přenášen v otevřené podobě a lze ho tak snadno zachytit. Při zachytávání SSID při asociaci klienta s přípojným bodem se používá i provokací, kdy útočník do bezdrátové sítě vysílá rámce, které přinutí klienty, aby se znovu asociovali.

Kontrola MAC adres

Přípojný bod bezdrátové sítě má k dispozici seznam MAC adres klientů, kterým je dovoleno se připojit (tzv. whitelist). Zrovna tak je možné nastavit blokování určitých MAC adres (blacklist). Útočník se může vydávat za stanici, která je již do bezdrátové sítě připojena pomocí nastavení stejné MAC adresy (pokud je na AP tato funkce aktivní).

IEEE 802.1X

Podrobnější informace naleznete v článku IEEE 802.1X.

Přístupový bod vyžaduje autentizaci pomocí protokolu IEEE 802.1X. Pro ověření je používán na straně klienta program, který nazýváme prosebník (suplikant), kterému přístupový bod zprostředkuje komunikaci s třetí stranou, která ověření provede (například RADIUS server). Za pomoci 802.1X lze odstranit nedostatky zabezpečení pomocí WEP klíčů.

WEP

Podrobnější informace naleznete v článku Wired Equivalent Privacy.

Šifrování komunikace pomocí statických WEP klíčů (Wired Equivalent Privacy) symetrické šifry, které jsou ručně nastaveny na obou stranách bezdrátového spojení. Kvůli nedostatkům v protokolu lze zachycením specifických rámců a jejich analýzou lze klíč relativně snadno získat (programem Aircrack-ng). Autentizace přístupu do WPA sítě je prováděno pomocí PSK (Pre-shared key – obě strany používají stejnou dostatečně dlouhou heslovou frázi), RADIUS serverem (ověřování přihlašovacím jménem a heslem) nebo dalšími variantami EAP protokolu.

WPA

Podrobnější informace naleznete v článku Wi-Fi Protected Access.

Kvůli zpětné kompatibilitě využívá WPA (Wi-Fi Protected Access) WEP klíče, které jsou ale často dynamicky bezpečným způsobem měněny (protokoly TKIP, CCMP). Pro průběžnou změnu klíčů slouží speciální doprovodný program, který nazýváme prosebník (suplikant). Z tohoto důvodu bylo možné doplnit WPA i do staršího hardware a výrobci nemuseli uvádět na trh úplně nová zařízení. PSK klíč lze zjistit pouze slovníkovou metodou (tj. zkoušením různých hesel proti odposlechnuté variantě úspěšné autentizace).

WPA2

Podrobnější informace naleznete v článku IEEE 802.11i.

Novější WPA2 přináší kvalitnější šifrování (šifra AES), která však vyžaduje větší výpočetní výkon, a proto nelze WPA2 používat na starších zařízeních.

WPS

Podrobnější informace naleznete v článku Wi-Fi Protected Setup.

Pro snadnější připojení do bezdrátové sítě je možné se připojit pomocí WPS. Na zařízení může být WPS tlačítko, kdy po jeho zmáčknutí lze se po omezený čas do bezdrátové sítě připojit bez autentizace. Místo tlačítka může být zadán osmimístný PIN (oba způsoby lze kombinovat). Číselný kód však lze v poměrně krátké době uhádnout zkoušením různých variant. Novější zařízení proto obsahují omezení počtu pokusů o připojení, případně lze WPS úplně vypnout.

Šifrování

Moderní metody zabezpečeného připojení k bezdrátové síti zajišťují šifrování veškerých přenášených dat. Pokud někdo odposlouchává, nemá tak možnost zjišťovat některé detaily o dotyčné síti nebo o příslušném síťovém provozu (např. analýzou MAC adres, IP adres, DNS dotazů, ARP, nešifrovaných hlaviček HTTPS atd.). Připojení k nešifrované bezdrátové síti však není přímým ohrožením sítě nebo uživatele, protože důležitý síťový provoz je v současnosti šifrován i sám o sobě (tj. přenosy webového obsahu pomocí HTTPS, SSH) nebo kontrolována integrita přenášených dat (DNSSEC, elektronický podpis atp.).

VPN

Podrobnější informace naleznete v článku Virtuální privátní síť.

Pomocí VPN lze rozdělit klienty bezdrátové sítě podle důvěryhodnosti a tím jim povolit nebo znemožnit přístup u určitým částem vnitřní sítě LAN.

RF stínění

Pomocí speciální barvy na zdi a okenních fólií lze oslabit bezdrátový signál, což znesnadní případné neoprávněné připojování k bezdrátové síti.

Vliv na zdraví

Spekulace, že elektrosmog produkovaný Wi-Fi negativně ovlivňuje některé živé organismy nebyly potvrzeny. Přípustný vyzařovaný výkon je totiž nízký a není trvalý (například max. 100 mW v pásmu 2,4 GHz, 200 mW uvnitř budov a 1 W venku v pásmu 5 GHz).

Poznámky

  1. ↑ Podle jednoho ze zakládajících členů Wi-Fi Alliance nemá slovo "Wi-Fi" žádný rozšířený význam a bylo zvoleno pouze jako zapamatovatelnější název pro tuto technologii. V některých materiálech Wi-Fi Alliance, které vznikly brzy po tomto výběru, se používalo spojení wireless fidelity, ale od toho se rychle upustilo.

IEEE 802.11

IEEE 802.11 je sada standardů pro bezdrátovou komunikaci v lokálních sítích používající obchodní název Wi-Fi (označováno též WLAN, Wireless LAN). Standardy jsou vyvíjeny 11. pracovní skupinou IEEE LAN/MAN standardizační komise (IEEE 802). Označení 802.11x (kde x jsou doplňující písmena) je používáno pro novější doplňky k původnímu standardu IEEE 802.11. Pro komunikaci jsou využívány volné rádiové frekvence v ISM pásmu.

Charakteristika

Standard 802.11 zahrnuje několik druhů modulací pro posílání radiového signálu, přičemž všechny používají stejný protokol. Nejpoužívanější modulace jsou definované v dodatcích k původnímu standardu s písmeny a, b, g. Standard 802.11n přináší další techniku modulace. Původní zabezpečení bylo vylepšeno dodatkem i. Další dodatky (cf, h, j) pouze opravují nebo rozšiřují předchozí specifikaci.

Standard 802.11a používá frekvenci 5 GHz (v ČR celkem 19 nepřekrývajích kanálů, je jich až 200). Standardy 802.11b, 802.11g a 802.11n používají 2,4 GHz pásmo (v ČR celkem 13 kanálů, ale nepřekrývající jsou pouze tři, v některých zemích čtyři). Obě frekvence jsou ve většině zemí k dispozici jako bezlicenční ISM pásmo (k volnému použití bez nutnosti platit státu licenční poplatky), protože tyto frekvence jsou pohlcovány vodou a proto není možné je pronajímat. Frekvenci 2,4 GHz proto používají mikrovlnné trouby pro ohřev vody nebo různé lékařské a průmyslové přístroje.

Bezlicenční pásmo 2,4 GHz používají kromě Bluetooth/Wi-Fi také různá zařízení, jako jsou domácí bezdrátové kamery, bezdrátové telefony, bezdrátové myši, klávesnice a další zařízení, protože poměrně dobře překonává překážky (zdi a podlahy). Kanály 1 až 6 využívají také radioamatéři. Výsledkem je, že je pásmo 2,4 GHz hlavně ve větších městech velmi zarušené a komunikace je obtížná, pomalá nebo úplně nemožná.

Bezlicenční pásmo 5 GHz je používáno kratší dobu, protože hůře překonává překážky (zdi, podlahy) než frekvence 2,4 GHz (čím vyšší frekvence, tím se více chová jako světlo). Je využíváno původním standardem 802.11a a novějším 802.11ac a je tak méně přetížené a zarušené než pásmo 2,4 GHz.

Standard 802.11ad přidává pásmo 60 GHz (první zařízení byla na trhu v roce 2016),[1] které však kvůli vysoké frekvenci už vyžaduje přímou viditelnost mezi vysílačem a přijímačem.

Standardy 802.11ax nebo připravovaný 802.11be používají kromě běžných frekvencí 2,4 a 5 GHz ještě pásmo 6 GHz,[2] které je schopné podobně jako u frekvence 5 GHz překonávat menší překážky (například zeď).

V říjnu roku 2018 zavedla Wi-Fi Alliance pro lepší orientaci nová označení pro jednotlivé verze standardů IEEE 802.11 ve stylu Wi-Fi x (kde x označuje číslem konkrétní verzi standardu).

Kompatibilita

Vzájemnou kompatibilitu Wi-Fi zařízení zaručuje certifikační proces deklarovaný logem Wi-Fi Alliance. Typicky je zajištěna zpětná kompatibilita nových zařízení se staršími.

802.11g

Hardware podporující 802.11g (2,4 GHz, až 54 Mbps, od roku 2003) je plně zpětně kompatibilní se starším hardware 802.11b (od roku 1999). Avšak přítomnost 802.11b zařízení v síti 802.11g ji může velmi výrazně zpomalit, a proto některé 802.11g routery podporují speciální režim 54g LRS (Limited Rate Support). Standard 802.11g používá novější modulační schéma OFDM, které přebírá od standardu 802.11a s rychlostmi 6, 9, 12, 18, 24, 36, 48 a 54 Mbit/s a pro rychlosti 5,5 a 11 Mbps se vrací ke staršímu modulačnímu schématu CCK (podle 802.11b) a tím i DBPSK/DQPSK+DSSS pro 1 a 2 Mbps. Díky novému ODFM dosahuje 802.11g na stejných frekvencích vyšších přenosových rychlostí.

Protože zařízení podporující 802.11g nastoupily masivně na trh ještě před vydáním konečné verze tohoto standardu a kvůli stáří a krátkému prodeji zároveň již prakticky neexistují zařízení podporující pouze standard 802.11b, je výhodné na přístupových bodech zakázat standard 802.11b (tj. vypnout podporu rychlostí 1, 2, 5,5 a 11 Mbps). Tím je zamezeno, aby 802.11g zařízení přepnula na nižší rychlosti (což se děje automaticky při zhoršení síly/kvality signálu) a přístupový bod musel vynutit pro všechna ostatní připojená zařízení pomalejší modulaci DSSS.

Vedlejším efektem vypnutí 802.11b je, že nejnižší mandatorní rychlost bude vyšší, a protože na nejnižší rychlosti vysílají majákové rámce (beacon, tj. oznamování existence SSID), nedojde tak k vyčerpání přenosové kapacity ve větších Wi-Fi sítích (pouhým oznamováním existence SSID), kde více přístupových bodů vysílá na stejné nebo překrývající se frekvenci 2,4 GHz.

802.11n

Standard 802.11n je zpětně kompatibilní se standardem 802.11g. Zavádí podporu MIMO, které usnadňuje překonávání překážek a zavádí navíc nepovinně podporu pásma 5 GHz. Rychlost bude:

  • až 600 Mbps při 4×4 MIMO (4 streamy),
  • až 450 Mbps při 3×3 MIMO (příklad implementace: Intel® WiFi Link 5300 Series),
  • až 300 Mbps při 2×2 MIMO (např.: Intel® WiFi Link 5100 Series).

Skutečná rychlost by při 600 Mbps na fyzické vrstvě (L1) mohla být až 400 Mbps na MAC (L2) vrstvě. Reálně je s Intel® WiFi Link 5100 v noteboocích dosahováno reálné rychlosti nad 100 Mbps.

Jednotlivé standardy

IEEE 802.11a (Wi-Fi 1)

Tento standard využívá WiFi v pásmu 5 Ghz. Používá modulaci OFDM. Oproti standardu IEEE 802.11b/IEEE 802.11g je tento stabilnější a vyspělejší. Má větší povolený vyzařovací výkon oproti 802.11b/g, tím ho lze používat na delší vzdálenosti.

IEEE 802.11b (Wi-Fi 2)

Tento standard je jedním z doplňků norem IEEE 802.11 zabývajících se definicí bezdrátového komunikačního standardu známým pod komerčním názvem Wi-Fi. Byl schválen v roce 1999 a oproti původnímu standardu navyšuje přenosovou rychlost na 11 Mbit/s v přenosovém pásmu 2,4 GHz a používá modulaci DSSS. Dosah až 12 km ve volném prostředí. Tento standard je velmi starý a prakticky již neexistují zařízení, které by neuměly novější standard 802.11g.

IEEE 802.11c

IEEE 802.11c je WiFi standard věnující se přemosťování v bezdrátových zařízeních. Jde o hotový standard doplňující standard IEEE 802.1D, který přidává požadavky na přemosťování Media Access Control (MAC), což je podvrstva linkové vrstvy. Standard IEEE 802.1D upravuje základní LAN standard pro 802.11 rámce. Zejména dodává do klauzule 2.5 Support of the Internal Sublayer Service podklauzuli, která pokrývá přemosťovací operace v rámci 802.11 MAC podvrstvy.

IEEE 802.11d

IEEE 802.11d je WiFi standard často nazývaný také jako globální harmonizační standard. Je používaný v zemích, kde nejsou povoleny systémy používající jiné dodatky ke standardu IEEE 802.11.

Definuje požadavky na fyzickou vrstvu k uspokojení regulačních domén nepokrytých existujícími standardy. Liší se v povolených frekvencích, vyzařovacích výkonech a propustnosti signálu. Specifikace eliminuje nutnost vývoje a výroby specifických produktů pro různé země.

Chování protokolu

Zapnutím podpory pro IEEE 802.11d v přístupovém bodě způsobí, že zařízení začne vysílat do celé sítě (broadcastovat) ISO kód země ve které se nachází jako součást svých beacon paketů a požadavků na odpověď. Pokud je zapnut, klient přizpůsobí své frekvence, vyzařovací výkon a propustnost. Standard je tak vhodný pro systémy, které chtějí poskytovat globální roaming.

IEEE 802.11e

Související informace naleznete také v článku IEEE 802.11e.

IEEE 802.11e je WiFi doplněk standardu IEEE 802.11 vylepšující takzvanou Media Access Control (MAC) podvrstvu linkové vrstvy rozšířením podpory kvalitu služeb (Quality of Service, QoS). Standard je důležitý pro aplikace citlivé na zpoždění jako jsou Voice over Wireless IP a proudová multimédia.

IEEE 802.11g (Wi-Fi 3)

Je WiFi standard rozšiřující IEEE 802.11b. Je zpětně kompatibilní, vysílá ve stejném frekvenčním pásmu 2400 - 2485 MHz, ale maximální nominální rychlost je 54 Mbit/s, což odpovídá přenosům přibližně o rychlosti 25 Mbit/s.

Použité modulační schéma je OFDM pro rychlosti 6, 9, 12, 18, 24, 36, 48 a 54 Mbit/s, přičemž pro rychlosti 1, 2, 5.5 a 11 Mbit/s je použito stejné schéma jako ve standardu IEEE 802.11b.

IEEE 802.11h

IEEE 802.11h je WiFi standard doplňující IEEE 802.11a, který je navržen s ohledem na evropské podmínky, aby bylo možné sítě využívat mimo budovy. Řeší například problémy s rušením od ostatních zařízení, pracujících na 5 GHz frekvenci. Na tomto pásmu pracují například radary nebo některé satelitní systémy. V podstatě mají bezdrátová zařízení v případě, že detekovaly rušení omezit vysílací výkon nebo uvolnit kanál, na kterém toto rušení rozpoznaly.

Tento standard upravuje fyzickou vrstvu a podčást linkové vrstvy, takzvanou Media Access Control (MAC) podvrstvu. Dynamickým výběrem kanálu přináší také lepší pokrytí jednotlivých kanálů.

IEEE 802.11n (Wi-Fi 4)

IEEE 802.11n je WiFi standard, který si klade za cíl upravit fyzickou vrstvu a podčást linkové vrstvy, takzvanou Media Access Control (MAC) podvrstvu tak, aby se docílilo reálných rychlostí přes 100 Mbit/s. Maximální fyzická (L1) rychlost může být až 600 Mbit/s při MAC (L2) rychlosti až 400 Mbit, to v konfiguraci 4×4 MIMO. V roce 2008 se masověji prodávají zařízení 802.11n Draft 2.0, typicky s konfigurací 2×2 nebo max. 3×3 MIMO. Reálná přenosová rychlost (L4) zatím do 200 Mbit/s...

Zvýšení rychlosti se dosahuje použitím MIMO (multiple input multiple output) technologie, která využívá vícero vysílacích a přijímacích antén.

IEEE 802.11ax

Definován pro sítě na kmitočtech 2,4 i 5 GHz a je označován též jako Wi-Fi 6, případně Wi-Fi 6E při využití budoucího pásma RLAN 6 GHz. Zavádí techniku modulace OFDMA známou z celulárních sítí (LTE, 5G, WiMAX). Hlavním cílem je zvýšit propustnost v zahuštěných sítích v omezeném prostoru, například v kancelářských nebo průmyslových objektech.

Kanály a mezinárodní kompatibilita

Standard 802.11 dělí každé z výše popsaných pásem do kanálů podobným způsobem, jako jsou rozděleny pásma rozhlasového a televizního vysílání. Například pásmo 2,4000-2,4835 GHz je rozděleno do 13 kanálů vzájemně posunutých o 5 MHz, přičemž kanál 1 pracuje na frekvenci 2,412 GHz a kanál 13 na frekvenci 2,472 GHz (Japonsko přidalo 14. kanál, který je povolen pouze pro 802.11b, a je posunut o 12 MHz od kanálu 13). 802.11b byl založen na DSSS modulaci s celkovou šířkou kanálu 22 MHz bez strmých prahů. Kvůli tomu jsou pouze tři nepřekrývající se kanály v celém pásmu. Dokonce i nyní je mnoho zařízení dodáváno s přednastavenými kanály 1, 6 a 11, i když novější standard 802.11g umožňuje čtyři vzájemně se nepřekrývající kanály - 1, 5, 9 a 13. Nyní jsou k dispozici čtyři, protože ODFM modulované 802.11g kanály jsou 20 MHz široké.

Dostupnost kanálů se řídí podle toho, jak který stát přiděluje rádiové spektrum různým službám. Na jedné straně Japonsko umožňuje použití všech 14 kanálů pro 802.11b, naproti tomu jiné země, jako je například Španělsko, zpočátku povolily jen kanály 10 a 11, Francie povolila pouze 10, 11, 12 a 13. Nyní jsou povoleny kanály 1 až 13. Severní Amerika a některé země Střední a Jižní Ameriky povolují pouze kanály 1 až 11.

Kromě určení střední frekvence kanálu, 802.11 rovněž specifikuje (v kapitole 17) spektrální masku definující maximální povolený vysílací výkon v každém kanálu. Maska vyžaduje signál oslabený minimálně o 20 dB od amplitudy vrcholu v rozmezí ± 11 MHz od střední frekvence, tedy bodu, ve kterém je kanál efektivně široký 22 MHz. Jedním z důsledků je, že zařízení může použít pouze každý čtvrtý nebo pátý kanál bez překrytí, obvykle 1. 6. a 11. v Americe, a teoreticky 1. 5. 9. a 13. v Evropě, ačkoli použití kanálů 1, 6 a 11 je v Evropě také typické. Dále kanály 1-13 účinně využívají pásmo 2.401-2.483 GHz, skutečně alokované však je, například, 2.400-2.4835 GHz ve Velké Británii, 2.402-2.4735 GHz v USA, atd.

Vzhledem k tomu, že spektrální maska definuje pouze omezení vysílacího výkonu až do ±11 MHz od střední frekvence, aby byl zeslaben o -50 dBr, tak se často předpokládá, že energie kanálu nesahá za tyto meze. Mnohem přesnější je říci, že vzhledem k oddělení kanálů 1, 6 a 11, by měl být signál na každém z nich dostatečně oslabený tak, že bude jen minimálně rušit zařízení na jiném kanálu. Vzhledem k near-far problému může vysílač ovlivnit (znecitlivět) přijímač na "nepřekrývajícím" se kanálu, ale pouze v případě, že se nachází v blízkosti přijímače (méně než metr) nebo pracuje nad povolenými úrovněmi výkonu.

Ačkoliv tvrzení, že kanály 1, 6, a 11 se "nepřekrývají" je omezeno na frekvenční posun nebo rušení zařízení, zásada 1-6-11 má význam. Pokud jsou vysílače u sebe blíže, než na kanálech 1, 6 a 11 (například 1, 4, 7 a 10), tak může překrývání mezi kanály způsobit nepřijatelné zhoršení kvality signálu a propustnosti. Pokud nejsou vysílající zařízení blízko sebe, lze využít útlum signálu a je pak možné překrývající se kanály využít (díky frekvenční modulaci lze na přijímající straně slabší signál snadno odfiltrovat).

Regdomain IEEE 802.11 je regulační oblast. Různé státy definují různé úrovně povoleného vysílacího výkonu, času, po který může být kanál obsazený a různé dostupné kanály.Doménové kódy jsou specifikovány pro Spojené státy, Kanadu, ETSI (Evropu), Španělsko, Francii, Japonsko a Čínu.

Většina wifi zařízení je v základu nastavena na regdomain 0, což znamená "nejmenší" společné nastavení, tj. zařízení nebude mít vysílací výkon nad stanovenou mezí nikde na světě, ani nebude využívat frekvence, které nejsou všude povoleny. Nastavení regdomain je často složité nebo ani není možné ho změnit, aby koncoví uživatelé nebyli v rozporu s místními regulačními úřady (v ČR Český telekomunikační úřad).

Dodatky k IEEE 802.11 standardu

  • IEEE 802.11 – Původní standard pro 1 a 2 Mbit/s rychlost s frekvencí 2,4 GHz (1999)
  • IEEE 802.11a – 54 Mbit/s, 5 GHz standard (1999, produkty od 2001)
  • IEEE 802.11ac – 1 Gbit/s, 2,4 a 5 GHz standard (2011–2013, produkty od 2014)
  • IEEE 802.11ad – 7 Gbit/s, 2,4, 5 a 60 GHz standard (2009–2012, produkty od 2016)[1]
  • IEEE 802.11b – Vylepšení 802.11 s podporou 5,5 a 11 Mbit/s (1999)
  • IEEE 802.11c – Bezdrátové přemostění (bridge); obsaženo v IEEE 802.1D standardu (2001)
  • IEEE 802.11d – Mezinárodní roamingový dodatek (2001)
  • IEEE 802.11e – Vylepšení QoS, včetně dlouhých (burst) paketů (2005)
  • IEEE 802.11F – Komunikace mezi bezdrátovými přístupovými body (2003) Stažen v březnu 2006.
  • IEEE 802.11g – 54 Mbit/s, 2,4 GHz standard (zpětně kompatibilní s 802.11b) (2003)
  • IEEE 802.11h – Správa spektra 802.11a (5 GHz) pro Evropu (2004)
  • IEEE 802.11i – Vylepšený autentizační a šifrovací algoritmus (WPA2) (2004)
  • IEEE 802.11j – Dodatek pro Japonsko; nová frekvenční pásma pro multimedia (2004)
  • IEEE 802.11k – Vylepšení správy rádio zdrojů pro vysoké frekvence (navazuje na IEEE 802.11j), klient si průběžně skenuje okolní AP a hledá nejvhodnější, ke kterému by se připojil
  • IEEE 802.11l – (rezervováno a nebude použito)
  • IEEE 802.11m – Správa standardu: přenosové metody a drobné úpravy.
  • IEEE 802.11n – Vylepšení pro vyšší datovou propustnost
  • IEEE 802.11o – (rezervováno a nebude použito)
  • IEEE 802.11p – Bezdrátový přístup pro pohyblivé prostředí (auta, vlaky, sanitky)
  • IEEE 802.11q – (rezervováno a nebude použito, aby se nepletlo s 802.1Q)
  • IEEE 802.11r – Rychlé přesuny mezi přístupovými body (roaming) (2008), autentizační tokeny lze sdílet (např. přes centrální controller)
  • IEEE 802.11s – Samoorganizující se bezdrátové sítě. (ESS Mesh Networking)
  • IEEE 802.11T – Předpověď bezdrátového výkonu – testovací metody
  • IEEE 802.11u – Spolupráce se sítěmi mimo 802 standardy (například s mobilními sítěmi)
  • IEEE 802.11v – Správa bezdrátových sítí (konfigurace klientských zařízení během připojení), umožňuje zjistit, jak jsou okolní AP zatížena (klient si může vybrat slabší připojení, avšak s méně připojenými klienty)
  • IEEE 802.11w – Chráněné servisní rámce
  • IEEE 802.11x – (rezervováno a nebude použito)
  • IEEE 802.11y – Pro běh ve frekvenčním pásmu 3650 – 3700 MHz (veřejné pásmo v USA)

Pojem 802.11x je neformálně používán k označení libovolného 802.11 standardu. (Standard IEEE 802.1X pro řízení přístupu k síti založený na autentizaci a filtrování portů, je běžně nesprávně označován jako 802.11x.)

802.11F a 802.11T jsou samostatné dokumenty, a nejsou to tedy dodatky k IEEE 802.11 standardu. Proto obsahují velké písmeno.

Wi-Fi 5 Ghz 

Wi-Fi 5 (IEEE 802.11ac) je standard bezdrátových sítí rodiny IEEE 802.11 (s obchodním označení Wi-Fi) využívající frekvenci 5 GHz, který přinesl vysokou datovou propustnost. Standard 802.11ac byl vyvinut IEEE Standards Association mezi lety 2011–2013 a schválen byl v lednu 2014.

IEEE 802.11ac má teoretickou propustnost mezi více stanicemi alespoň 1 Gbps (gigabit za sekundu) a propustnost jedné linky alespoň 500 Mbps (0,5 Gbps). Zvýšení rychlosti bylo dosaženo rozšířením a vylepšením konceptů zavedených standardem IEEE 802.11n: širší radiofrekvenční pásmo (až 160 MHz), více prostorových MIMO kanálů (až osm), MU-MIMO (víceuživatelské MIMO) pro downlink (až pro čtyři klienty) a modulaci s vysokou hustotou (až 256-QAM).

Nové technologie

Nové technologie zahrnuté v 802.11ac jsou:

  • Rozšířené pásmo na kanál
    • Minimálně 80 MHz pro stanice (oproti 40 MHz maximu v 802.11n), možno až 160 MHz
  • Více MIMO prostorových kanálů
    • Podpora pro až osm prostorových kanálů (oproti čtyřem v 802.11n)
  • Downlink Multi-User MIMO (MU-MIMO, umožňuje až čtyři souběžná spojení k MU-MIMO klientům)
    • Umožňuje simultánní přenos dat od několika stanic najedou
      • "Prostorově dělené mnohočetné přístupy" (Space Division Multiple Acces – SDMA): přenosové kanály nejsou odděleny frekvencí ale prostorově, podobně jako MIMO v 802.11n
    • Downlink MU-MIMO (jedno vysílající zařízení, více přijímajících zařízení) je zařazen jako volitelný režim.
  • Modulace
    • 256-QAM (802.11n používá 64-QAM)
  • Ostatní
    • Standardizované formování signálu umožňující kompatibilitu mezi zařízeními různých výrobců (802.11n tento standard nemá, což činilo správnou funkci formování nemožnou)
    • Modifikovaná vrstva MAC pro podporu zmíněných změn
    • Souběžná existence mechanismu pro 20/40/80/160 MHz kanály pro zachování kompatibility

Povinné a nepovinné prvky

  • Povinné prvky přenesené z 802.11a/g
    • 800 ns ochranný interval (ochrana před propagačním zpožděním)
    • Binární konvoluční kód
    • Jeden prostorový kanál
  • Nové povinné prvky
    • 80 MHz šířka kanálů
  • Nepovinné prvky přenesené z 802.11n
    • Dva až čtyři prostorové kanály
    • Low-density parity-check code (LDPC)
    • Space-Time Block Coding (STBC)
    • Formování vysílaného signálu (TxBF)
  • Nové nepovinné prvky
    • Pět až osm prostorových kanálů
    • 160 MHz široké přenosové kanály
    • Spojování kanálů 80+80 MHz (nesouvislé spojování 80+80)
    • MCS 8/9 (256-QAM)

Nové scénáře a konfigurace

Jednokanálové i vícekanálové vylepšení podporované 802.11ac umožňují několik nových scénářů použití bezdrátového připojení, například: streamování HD videa několika klientům naráz, rychlou synchronizaci a zálohu velkých datových souborů, bezdrátové připojení zobrazovacích zařízení, použití pro velké plochy pokrytí a automatizace výrobních procesů.[5]

Po přidání USB 3.0 rozhraní k 802.11ac přístupovému bodu (AP) mohou zařízení využít připojené úložné zařízení k poskytování různých služeb jako streamování videa, FTP server a osobní cloud.[6] S úložištěm připojeným skrze USB 2.0 není jednoduché naplnit celou šíři poskytovaného pásma.

Rychlosti

Uváděné

Wi-Fi 6 Ghz


IEEE 802.11ax je novou modulací standardu IEEE 802.11, který byl schválen v únoru 2021.[1] Dle nové jmenné konvence Aliance Wi-Fi je tato modulace označována jako Wi-Fi 6. Nové pojmenování jednotlivých modulací standardu IEEE 802.11 Aliance Wi-Fi zavádí z důvodu snadnějšího pochopení jednotlivých generací Wi-Fi pro běžného uživatele. Toto nové označení standardu IEEE 802.11 není spojeno s rychlostí ani s jiným technickým parametrem. Jedná se o přímého nástupce standardu IEEE 802.11ac (Wi-Fi 5).

Oproti předcházejícím standardům, které byly především zaměřeny na zvyšování přenosové rychlosti, je Wi-Fi 6 zaměřena na zlepšení spolehlivosti a celkovou propustnost sítě v prostředí s velkým počtem zařízení, a to až čtyřnásobně oproti předchozí Wi-Fi 5. Přenosová rychlost Wi-Fi 6 je navýšena "pouze" o 37% na 9,6 Gb/s oproti 6,4 Gb/s u Wi-Fi 5. Standard je zpětně kompatibilní s předešlými standardy 802.11a/g/n/ac.

Standard 802.11ax podporuje iPhone 11 a novější (maximální šířka pásma 80 MHz a maximálně dva streamy), Samsung Galaxy A52s 5G, Galaxy Note 10, Galaxy S10 a další (případně novější) zařízení. Wi-Fi 6E podporuje Samsung Galaxy S21 Ultra, iPhone 14 ho nepodporuje.

Technologie Wi-Fi 6

  • OFDMA
  • MU-MIMO
  • BSS Color
  • TWT
  • NAV
  • Rozšíření přenosového pásma na 160 MHz
  • Modulace 1024-QAM
  • Frekvence 2,4 GHz a 5 GHz

OFDMA

Základním mechanismem OFDMA je rozdělení přenosu mezi několik sub kanálů, které se označují jako zdrojové jednotky (RU). Tento mechanismus je široce používaný především v celulárních sítích 5G. Ve standardu 802.11ax, který je prvním standardem Wi-Fi využívajícím tento mechanismus, lze rozdělit kanály Wi-Fi na 20, 40, 80 a 160 MHz na 9,18, 37 a 74 RU. Pro jeden 20MHz kanál lze tedy paralelně obsloužit až 9 různých uživatelů. Pro širší kanály tento počet adekvátně vzrůstá. Mimo efektivnější využití spektra přináší OFDMA také zmenšení režie přenosu, kde potvrzení úspěšného přenosu je vyžadováno od všech klientů současně. Pro fungování komunikace v rámci OFDMA je nutné, aby klienty někdo vzájemně koordinoval. O tuto koordinaci se v případě Wi-Fi 6 autonomně stará přístupový bod (AP), ze strany uživatele nebo zařízení není nutná žádná konfigurace.

MU-MIMO

Umožňuje za pomoci prostorových streamů obsloužit paralelně několik klientů díky tvarování energie vysílaného signálu (beamforming). V ideálním případě se u klienta nachází maximální signál vlastního streamu a nulový od cizích streamů. Tímto způsobem je možné vysílání několika nezávislých toků na jedné frekvenci, a to bez vzájemného rušení. Wi-Fi 6 umožňuje konfiguraci 8x8 streamů, tedy osm streamů do osmi zařízení, případně několik streamů k jednomu uživateli. Oproti Wi-Fi 5, kde MU-MIMO bylo dostupné pouze pro čtyři streamy a download, je u Wi-Fi 6 MU-MIMO dostupné jak pro download tak i upload.

BSS Color

BSS – Basic Service Set, lze zjednodušeně charakterizovat jako jeden AP a určitý počet asociovaných klientů (připojených stanic) k vysílané Wi-Fi síti daným AP. Wi-Fi 6 umožňuje označit komunikaci v rámci jedné BSS určitou barvou a komunikaci mimo tuto BSS jinou barvou. Jedná se o nastavení určitého bitu v PHY/MAC hlavičce, který může nabývat hodnot "0" až "63". Pomocí tohoto bitu jsou rozlišeny vlastní a cizí rámce. Pokud dojde k detekci komunikace jiné "barvy" na stejném kanále, je tato komunikace ignorována a lze přistupovat ke spektru a zahájit vlastní vysílání.

TWT

Funkce TWT – Target Wake Time umožňuje AP definovat pro jednotlivé klienty konkrétní čas nebo celou sadu časů, ve kterých spolu budou komunikovat. Mimo tento dohodnutý čas je klient odpojen. Tímto dochází k minimalizaci spotřeby energie a prodloužení životnosti baterie u mobilních zařízení.

1024-QAM

Kvadraturní amplitudová modulace (QAM) slouží k modulaci (binárních) číslic na analogový signál. Tyto přenosy signálu se též nazývají symboly. Každý signál se vysílá po určitou dobu - doba trvání symbolu. Pro 1024-QAM je tato doba 12,8 μs oproti 3,2 μs u Wi-Fi 5, která využívá 256-QAM. Počet přenesených bitů pomocí QAM se vypočítá pomocí logaritmu o základu 2 a hodnotě QAM. V případě Wi-Fi 6 je počet přenesených bitů 10 (log2 1024=10) oproti 8 bitům u Wi-Fi 5 (log2 256=8). Wi-Fi 6 má tedy o 25% větší propustnost než předchozí Wi-Fi 5.

Ostatní

Podpora pásem 2,4 GHz a 5 GHz (teoreticky podporuje pásma mezi 1 a 7 GHz) – Wi-Fi 5 podporuje pouze pásmo 5GHz, podpora zabezpečení WPA3, nárůst šířky pásma až na 160MHz.

Další rozšíření

V letech 2021–2023 probíhá uvolňování dalšího pásma 6 GHz a přijetí standardu Wi-Fi 6E pro zařízení pracující na krátkou vzdálenost. Jde především o klienty sítě internetu věcí (IoT), kde se uplatní možnost přidělit kanál o šířce pouze 20 MHz s nižší přenosovou rychlostí dat. Kromě toho je přístupový bod schopen vyhovět požadavku například bateriových zařízení na dlouhé přestávky mezi výměnou datového telegramu. Vysokorychlostní přenosy v pásmu 6 GHz jsou součástí až připravovaného standardu Wi-Fi 7.

V evropském prostoru komise CEPT připravuje harmonizaci pro kmitočty 5 925 – 6 425 MHz, zatímco v USA, Kanadě a Brazílii se zpřístupňuje pásmo 5 925 – 7 125 MHz. V tomto pásmu 6 GHz jsou povolena pouze zařízení standardu WiFi 6, aby nedocházelo k degradaci propustnosti pásma.

Wi-Fi 7 Ghz

Wi-Fi 7 je označení pro připravovaný IEEE 802.11be standard[1] bezdrátové komunikace typu Wi-Fi (IEEE 802.11) poskytující vysokou datovou propustnost až 46,1 Gb/s v bezdrátových sítích na frekvencích 2,4, 5 a 6 GHz se šířkou pásma až 320 MHz a 16 streamů. Signál je modulován efektivněji pomocí 4096-QAM oproti předešlé 1024-QAM a má tedy o 25 procent větší propustnost v poměru ke stejné frekvenci, což je vykoupeno nižším dosahem. Návrh tohoto standardu vychází z předešlých standardů Wi-Fi 6 a 6E, ke kterým přidává kromě 4,8 násobné rychlosti také další funkce.

20. září 2022 společnost Huawei představila první přístupový bod Wi-Fi 7 na trhu. Stalo se tak na akci HUAWEI CONNECT 2022 v Bangkoku. V prodeji by měl být na konci roku 2023.

Vytvořte si webové stránky zdarma! Tento web je vytvořený pomocí Webnode. Vytvořte si vlastní stránky zdarma ještě dnes! Vytvořit stránky